Tridiagonal test matrices for eigenvalue computations: Two-parameter extensions of the Clement matrix
نویسندگان
چکیده
The Clement or Sylvester-Kac matrix is a tridiagonal matrix with zero diagonal and simple integer entries. Its spectrum is known explicitly and consists of integers which makes it a useful test matrix for numerical eigenvalue computations. We consider a new class of appealing two-parameter extensions of this matrix which have the same simple structure and whose eigenvalues are also given explicitly by a simple closed form expression. The aim of this paper is to present in an accessible form these new matrices and examine some numerical results regarding the use of these extensions as test matrices for numerical eigenvalue computations.
منابع مشابه
On the nonnegative inverse eigenvalue problem of traditional matrices
In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.
متن کاملSplitting of Expanded Tridiagonal Matrices
The article addresses a regular splitting of tridiagonal matrices. The given tridiagonal matrix A is rst expanded to an equivalent matrix e A and then split as e A = B R for which B is block-diagonal and every eigenvalue of B R is zero, i.e., (M N) = 0. The optimal splitting technique is applicable to various algorithms that incorporate one-dimensional solves or their approximations. Examples c...
متن کاملTridiagonal Realization of the Anti-symmetric Gaussian Β-ensemble
Abstract. The Householder reduction of a member of the anti-symmetric Gaussian unitary ensemble gives an anti-symmetric tridiagonal matrix with all independent elements. The random variables permit the introduction of a positive parameter β, and the eigenvalue probability density function of the corresponding random matrices can be computed explicitly, as can the distribution of {qi}, the first...
متن کاملThe SBR Toolbox { Software
We present a software toolbox for symmetric band reduction, together with a set of testing and timing drivers. The toolbox contains routines for the reduction of full symmetric matrices to banded form and the reduction of banded matrices to narrower banded or tridiagonal form, with optional accumulation of the orthogonal transformations, as well as repacking routines for storage rearrangement. ...
متن کاملOn solving the definite tridiagonal symmetric generalized eigenvalue problem
In this manuscript we will present a new fast technique for solving the generalized eigenvalue problem T x = λSx, in which both matrices T and S are symmetric tridiagonal matrices and the matrix S is assumed to be positive definite.1 A method for computing the eigenvalues is translating it to a standard eigenvalue problem of the following form: L−1T L−T (LT x) = λ(LT x), where S = LLT is the Ch...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Computational Applied Mathematics
دوره 314 شماره
صفحات -
تاریخ انتشار 2017